Anonymous

Why Do We Have Thunderstorms?

1

1 Answers

Anonymous Profile
Anonymous answered
Clouds contain millions and millions of water droplets and ice particles suspended in the air. As the process of evaporation and condensation occurs, these droplets collide with other moisture that is condensing as it rises. The importance of these collisions is that electrons are knocked off of the rising moisture, creating a charge separation. The newly knocked-off electrons gather at the lower portion of the cloud, giving it a negative charge. The rising moisture that has lost an electron carries a positive charge to the top of the cloud.

As the rising moisture encounters colder temperatures in the upper cloud regions and begins to freeze, the frozen portion becomes negatively charged and the unfrozen droplets become positively charged. At this point, rising air currents have the ability to remove the positively charged droplets from the ice and carry them to the top of the cloud. The remaining frozen portion either falls to the lower portion of the cloud or continues on to the ground.

The charge separation has an electric field associated with it. Like the cloud, this field is negative in the lower region and positive in the upper region. The strength or intensity of the electric field is directly related to the amount of charge build-up in the cloud. As the collisions and freezing continue to occur, and the charges at the top and bottom of the cloud increase, the electric field becomes more and more intense -- so intense, in fact, that the electrons at the Earth's surface are repelled deeper into the Earth by the negative charge at the lower portion of the cloud. This repulsion of electrons causes the Earth's surface to acquire a strong positive charge.

All that is needed now is a conductive path so the negative cloud bottom can conduct its electricity to the positive Earth surface. The strong electric field creates this path through the air, resulting in lightning. The lightning is a high-voltage, high-current surge of electrons, and the temperature at the core of a lightning bolt is incredibly hot. For example, when lightning strikes a sand dune, it can instantly melt the sand into glass. The combination of the rapid heating of the air by the lightning and the subsequent rapid cooling creates sound waves. These sound waves are what we call thunder. There can never be thunder without lightning.

Answer Question

Anonymous